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Abstract--A dilute turbulent gas-solid two-phase flow model is developed in the present study. 
Time-averaged conservation equations for mass and momentum, and a two-equation k E closure are used 
to model the fluid phase. The solid phase consisting of  inelastic, frictional, uniform spheres is simulated 
by using a Lagrangian approach in which the particle trajectories and velocities are determined by 
integrating the particle equations of  motion. The fluid-solid coupling effects due to solid volume fraction 
and interfacial momentum interaction are incorporated in the simulation. A sticking-sliding collision 
model is employed for the particle-particle collisions and the particle-wall collisions. The two-phase model 
is implemented to simulate gas solid suspensions in a horizontal channel. Substantial agreement is found 
between the simulation result and the experimental data for the fluid pressure gradient, the distributions 
of  mean gas velocity, mean particle velocity and concentration. For dilute systems with solids volume 
fraction of  the order 10 3 interparticle collisions are found to be crucial in sustaining a steady and fully 
developed suspension in the horizontal channel, while the Magnus lift due to particle rotation is found 
to play a significant role as well. Detailed new numerical results for macroscopic properties such as 
Reynolds stresses, air turbulence intensities, particle fluctuation kinetic energy, mean particle angular 
velocity, particle stresses and angular momentum fluxes are presented in the paper. ,~© 1997 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Turbulent gas-solid flows are widely encountered in nature and industrial processes; for example, 
sand storm, powder snow avalanche, pneumatic transport of particulate, cyclone separators and 
classifiers, chemical reactors, and fluidized beds to name a few. These systems often involve 
complicated flow dynamics and interactions between flow constituents and their surroundings. 

Experimental and numerical studies of gas-solid suspensions with relatively large particles in 
pipes or channels had been conducted by researchers such as Lourenco et al. (1983), Tsuji et al. 

(1982, 1987) and Frank et al. (1993). Empirical power law (Frank et al. 1993), logarithmic law 
of wall (Oesterle and Petitjean 1993), a single boundary layer equation expressed in terms of a 
stream function (Tsuji et al. 1987), one-equation eddy viscosity model (Lourenco et al. 1983), 
two-equation k--e scheme (Sommerfeld 1992) had been used to model the fluid phase. All the above 
numerical simulations except one, used one-way coupling in which the influence of the solid 
particles on the fluid phase is neglected. Tsuji et al. (1987) incorporated in their model a two-way 
coupling in interfacial momentum interaction. A number of experimental measurements of mean 
fluid velocity profile in horizontal pipes and channels have shown that the fluid velocity profiles 
could be significantly modified by the interfacial coupling effect even at very dilute systems with 
bulk solids volume fraction of the order 10 -3 . 

Interparticle collisions are often neglected in simulation studies of dilute gas-solid suspension 
such as in Tsuji et al. (1987), Sommerfeld (1992) and Frank et al. (1993). Oesterle and Petitjean 
(1993) incorporated interparticle collisions of inelastic, frictional spheres in their 'non-dilute' 
gas-solid suspension in a horizontal pipe by randomly generating artificial particle-particle 
collisions according to an ad hoc collision probability distribution which was derived from a local 
Maxwellian distribution. 

Particle-wall collisions play an integral role in gas-solid wall-bounded flow systems. Lourenco 
et al. (1983), Tsuji et al. (1987), Sommerfeld (1992) and Frank et al. (1993) had proposed similar 
kind of 'virtual wall' model to account for the effect of 'wall roughness'. Typically, the angles of 

575 



576 c K. K. L UN and H. S. LIU 

reflection or the collisional properties of the impinging particles were changed randomly within 
certain limits associated with a virtual wall. Using a traditional rigid-body-dynamics model for 
inelastic, frictional particle-wall collisions, Tsuji et al. (1987) found in their numerical simulation 
that the individual particle eventually deposited on the bottom of the horizontal channel, while 
their experiments apparently showed a steady suspension. When a virtual wall model was employed 
in their simulation, the bouncing motion of individual particle was sustained, and collectively the 
particles constituted a steady flow. One obvious function of  a virtual wall was to redirect particle 
momentum randomly each time a particle collided with the wall. The horizontal streamwise impulse 
is often greater than the vertical one. As far as large spherical particles colliding with solid flat walls 
are concerned, the virtual wall model could have acted essentially as an artificial momentum source 
for the solid phase in the vertical direction. As a result, the vertical velocity component of the 
dispersed phase is increased, and particle deposition is avoided. In view of this, it is perhaps fair 
to say that at the present time the fundamental mechanism of how the particles are suspended in 
a horizontal turbulent fluid-solid flow is still not well understood. 

In this paper, a dilute turbulent gas-solid two-phase model is proposed. The turbulent gas phase 
is modeled by a set of time-averaged conservation equations for mass and momentum, and a 
two-equation k E closure. The solid phase consisting of inelastic, frictional, uniform spherical 
particles is simulated by using a Lagrangian approach in which the particle trajectories and 
velocities are calculated by integrating the equations of motion for particles dispersed in a turbulent 
fluid. A sticking-sliding collision model (Lun and Bent 1994) is employed for the particle-particle 
collisions and the particle-wall collisions. A two-way coupling iterative scheme is used to account 
for the coupling effects of  solids volume fraction and interfacial momentum interaction. The 
two-phase model is applied to simulate a dilute turbulent gas-solid flow in a horizontal channel 
in which the fundamental flow governing mechanisms are examined. The simulation result is 
compared with experimental data. 

2. FLUID-PHASE TRANSPORT EQUATIONS 

The fluid-phase is assumed to be isothermal and incompressible. The volume fraction of the solid 
phase is defined as ~ = nVp/V~, where Vp is the volume of a single particle and n is the number 
of particles in the volume Vc. A dilute flow system with ~ < 0.1 is considered here. 

Crowe (1982) proposed that a dilute gas-particle flow is a flow in which the particle motion is 
controlled by local aerodynamic forces, and in a dense gas-particle flow, particle motion is governed 
by particle-particle collisions. Elghobashi (1994) distinguished dilute systems from dense ones 
based upon particle volume fraction and the ratio of the particle response time to the turbulent 
timescale. He suggested that systems with c~ < 0.001 are dilute and those with ~ > 0.001 are dense. 
According to the kinetic theory and the numerical simulations of gravity-free simple shear flows 
of single solid phase granular materials (Lun et al. 1984; Lun and Bent 1994), systems with ~ < 0.1 
can be regarded as dilute where the dominant mechanism for energy and momentum transfer is 
the kinetic mode rather than the collisional one. 

By focusing on a small finite control volume in the suspension, the mass conservation for the 
fluid phase may be expressed as 

0 
-~ (~pd + ~ (tip,u,) = 0 [ l l  

where pr and fl = 1 - ~ are the mass density and the volume fraction of the fluid phase, respectively. 
The instantaneous fluid velocity u is the sum of a mean component U and a fluctuation component 
u', i.e. u = U + u'. (Lower case letters or symbols, upper case ones and primed lower case ones 
denote instantaneous, mean, and fluctuation quantities, respectively, unless specified otherwise.) 
Similarly, the momentum conservation for the fluid phase may be written as 

a-t (#P ' " ' )  + gZx, ( # P ' ' " ' )  = - (#P) + ~ ( # ~ )  - m, + p,#g, [2] 
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where p is the fluid pressure and g is the gravitational acceleration. The fluid stress tensor a~j is 
given as 

[" Ou, 8uj'] 2 ~gu, 
" = + - [3] 

where p is the fluid dynamic viscosity and 6~ is the unit tensor. The quantity m in [2] is the interfacial 
momentum flux per unit volume inside the control volume Vc. If  the forces acting on each particle 
within V~ are known, then one has 

'L 
m = ~ Fj [4] 

j ~ l  

where Fj is the net fluid force exerting upon the j th  particle. Note that the definition 
of  m in [4] is analogous to that of solids volume fraction and they both are volumetric mean 
quantities. 

The Reynolds time-averaging method is applied to [1]-[2]. Flows with relatively large and 
massive particles moving at intermediate particle Reynolds number in the inertia regime are 
considered in the present study. The particle Reynolds number, Rep = pw~d/#, is of the order 10 2 
where d is the particle diameter of the order 10 3 m, p is the fluid viscosity, and v, is the relative 
velocity between the particle and the local fluid. The gas to solid density ratio, pf/pp, is of  the order 
10 3. The ratio of  the particle response time to the eddy turnover time is 

rp_ 4 (p~f)(uo)(d) 
rZ - 3CD ~, Z "  

The factor 4/(3CD), and the ratios uo/v, and d/2e are approximately of order unity; CD is the drag 
coefficient, ue and 2< are the characteristic velocity and lengthscale of  the large eddies, respectively. 
As a result, the ratio ~0/~e is roughly of  the order 10 3. Thus, the influence of  fluid turbulence on 
the particles' motion would be small. The fluctuations of  the particle properties, ~,~, and those of  
the fluid properties, ~b(, may be assumed to be uncorrelated, i.e. ~q~i = 0. Quantities with overbars 
denote time-averaged values. Furthermore, the volumetric mean quantities of the solid phase such 
as the volume fraction and the interfacial momentum flux per unit volume (m) are assumed to 
independent of  the turbulence averaging time-scale of  the fluid phase. In other words, we have taken 
~ ' =  0 and ~ = ~, and similarly f f l '=  0 and ffl = M. As a result, from [1] the time-averaged 
continuity equation for the fluid phase is 

8Z (/~P') + (/~p,g,) = 0. [51 

Similarly, the time-averaged momentum equation is 
a , 

8~ (flprU,) + ~ (flp, UjU,) = ~ (tiP) Oxj [fl(~0 + ~o)] - Mi + pfflg, [6] 

where the mean fluid stress tensor is 

I/SUi OUj~ 2 0 U k ~  
= + ) - 

and z~ = -pfu[u; is the Reynolds stress tensor. 
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In conjunction with a single-phase fluid k-E turbulent model, Nisizima and Yoshizawa (1987) 
proposed an anisotropic Reynolds stress tensor as follows, 

r,, = - 5  p f k& + ix, k, ~ + O x , / +  ,, , z,,,&,,k, & - p,- ,,,E=, z,,,S,,,,, [7] 

and 

3 r,,, = C~,,,k/e" 

& ' J -  ~Xk CEVk 

~Uk 1 ( O U , _  ~U, ,?Uk) 

C3Uk OUk 
$3o-- ~x, ~xj 

where C~ (subscript m = 1, 2, 3) are model coefficients. According to Nisizima and Yoshizawa, the 
turbulence intensities in channel flows may be written as 

u:2 = 5 k + g (2C,, - C~3) 7 [8a] 

~,:2. = 5 k  __ 5 (Cr l  - -  2C ,3 )  - -  . (2 k {~y / [8b] 

= 5 k - 5 ( C ~ l  + c~3)7 [8c] 

where the coefficients C,l = 0.07 and CT3 = -0 . 015  were obtained by optimizing the agreement 
between the numerical predictions and the measurements for turbulent intensities in channel 
flows. The coefficient Ca which was not involved in the channel flow analysis remains an 
unknown. 

The turbulent kinetic energy, k, and the rate of  turbulent kinetic energy dissipation, E, are defined 
as 

and 

k = u,~u7/2 

GU~ ~Ui 
e = VOx i Oxj 

respectively, where v is the fluid kinematic viscosity. The turbulent eddy viscosity ~, in [7] may be 
expressed as 

k 2 
I*, = p f C ~ -  [91 

where C,, is a constant (Launder and Spalding 1974). 
The turbulent kinetic energy equation and the rate of  turbulent kinetic energy dissipation 

equation can be derived by taking moment  of u' with the instantaneous momentum equation 
[2] and moment  of  vVu' with the gradient of  the instantaneous momentum equation [2], 
respectively. 
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After applying time-averaging to the equations and modeling various terms in a manner similar 
to that performed for a single-phase turbulent fluid, the k-e equations for fluid-solid flows are 

~-~ (Bp~k) + (Bp~u~k) = ~ ~ ~ + ~ ~ + ~,; ~ - ~p~ [10] 

and 

~3~t (flPfe) + ~ (flPfU/e) = ~~x j fl P + a, ] (~X; j a ' f l - k  ~'; -ff-~x/ - a2flPr ~" [ll] 

In deriving [10]-[11], the fluid fluctuation energy per unit volume (u/m;) and the energy dissipation 
rate 

., Our dmi ~ ~v~ ~ j  

due to the interracial momentum transfer per unit volume are assumed to be negligibly small. 
If the fluid volume fraction fl in [10]-[11] is equated to unity, the k-e equations reduce to those 

derived by Launder and Spalding (1974) for a single-phase turbulent fluid. In dilute systems such 
as the ones addressed in the present study where the ratio rp/r~ >> 1, the degree of direct turbulence 
modulation in the carrier fluid due to the wakes shed by the relatively large and massive particles 
will be insignificant. The adoption of the closure coefficients from the single-phase k-~ turbulence 
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model  (Launder  and Spalding 1974) into the present  dilute two-phase one seems reasonable;  
i.e.C~ = 0.09, ak = 1.0, a, = 1.3, C,L = 1.44 and C,2 = 1.92. The  particles m a y  still influence the 
distr ibution of  the turbulence intensities indirectly th rough  the interfacial couplings. In cases where 
the direct turbulence modu la t ion  is substantial ,  the question of  how the closure coefficients might  
be affected is still an open one. 
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Near the wall region, the eddy viscosity is written as 

k 2 
#, = Cff ,  p f - -  

where f~ is a wall damping function given by 

£ = 1 - exp(-y+/5.2) 

The dimensionless distance y+ is expressed in wall unit defined as y+ = u~y/v where u, = (z~/pO °5 
is the friction velocity and zw is the shear stress at the wall. 

3. EQUATIONS OF PARTICLE MOTION 

The equation for translational motion of a particle in a turbulent fluid may be written as 

dv 
m p  - ~  = m p g  -4- F D  q-  FLS -4- F L M .  

The drag force is 

1 
FD = g pr~d2CDIVrlVr, 

where the drag coefficient CD is commonly given as (Cliff and Gauvin 1971) 

24 
G,=~e~% (R%< 1) 

R----~p(1 + 0.15Re °6s7) (1 < Rep < 1000). CD 

The Saffman (1965, 1968) lift due to fluid shearing motion is 

dUe [ ~dU" la. 
F L S  = 1 . 6 1 5 ( p r # ) V 2 d 2 C L s - ~ y  " (u~- G)ey/ 

According to Mei (1992), the coefficient CLS may be expressed as 

CLS = (1 -- 0.33147°S)exp(--0.1R%) + 0.33147 °s (Rep ~< 40) 

CLS = 0.0524(yR%) °S (Rep > 40) 

[121 

[131 

[141 
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where 7 = [dU,/dyld/(2vr). The Magnus lift due to particle rotation is 

1 z d  2 - -  (-2Jr X Yr 

The Magnus lift coefficient CLM may be written as (appendix A) 

CLM -- dl~rl Iv, I (Rep ~< 1) 

a'lo~,l CLM = ~ (0.178 + 0.822Rep -°5=) (1 < Rep < 1000). 

[] 5] 

In the above equations, mp is the mass of  a particle, U~ is the x-component  of  the mean fluid 
velocity, u and v are the instantaneous linear velocities of  the fluid and the particle, respectively. 
The quantities v~ = u -  v and ~0~ = ~ f - e ,  are the instantaneous relative linear and angular 
velocities between the local fluid and the particle, respectively. The local mean angular velocity of  
the fluid is defined as Or = 0.5V x U. 

Since the density ratio of  gas to solid being considered in the present study is of  the order 10 ~, 
the Basset force due to unsteady history effect and the virtual mass force due to acceleration of 
fluid surrounding the solid particle are small compared to the drag and the lifts. Thus they are 
neglected. 
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The rate of  angular momentum change of a spherical particle interacting with a viscous fluid 
may be written as (Dennis et al. 1980) 

mpaP d(0 p f d / 6 . 4 5  32.1 \ 
10 d t -  64 \Re,,; 

÷ ~T-_ Jl~,-r(0,- (20 ~< Re,,, ~< 1000) It'~coL] 

where the spin Reynolds number is defined as Re,~ = pfd2J~orl/(4/0. 

4. COLLISION MODEL 

The sticking-sliding collision model presented in Lun and Bent (1994) is employed for 
particle-particle collisions and particle-wall collisions in the present study. The model is simple 
and can produce result reasonably close to a number of experimental measurements. 

Consider a collision between two inelastic, frictional spherical particles 1 and 2 with velocities 
Vl and v2, angular velocities (0~ and (o2, respectively. All collisions are regarded as binary and 
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instantaneous. During the impacts, the interstitial fluid effect is neglected. The peripheral velocities 
of particles 1 and 2 are 

d 
gl =vI -$K x co,) 

and 

g2=v2-;(K x02) 

where K is the unit vector along the center line from particle 1 to particle 2. The total relative 
velocity, g12, at the contact point just prior to the collision is 

g12 = VIZ - ;(I< x ~2) [161 

where VIZ = vI - v? and oll = oI + w?. The components of gIz are changed in a collision such that 

K.g;"z = -e,(K.g,z), [171 

K x g& = -&(K x g,z) 1181 

where quantities with superscript asterisk denote post-collisional values, eP is the coefficient of 
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restitution in the normal  direction, and tip is called the coefficient of  resti tution in the tangential 
direction at the point  o f  contact .  

Using [17] and [18] in [16] the relationships between the pre- and post-collisional velocities can 
be written as 

mp(Vl -- v*) = mp(V2* -- v2) = J,  [19] 

and 

I(to* - to,) = I(to* - to2) = - d ( K  x J)/2, [20] 

J = mprffg,: + mp(r/, -- rh)K(K.g!2 ) [21] 

where J is the impulse, t/! = (1 + ep)/2, r h = 0 .50  + flp)Kr/(l + Kr), and Kr = 4I/(mp~) is a 
non-dimensional  momen t  o f  inertia parameter  (K, = 2/5 for sphere). 

It is evident in a number  of  experimental  and theoretical investigations (Foerster  et al. 1994; 
Johnson 1985; Maw et al. 1976, 1981; Goldsmith  1960) that  the coefficient o f  normal  restitution, 
er, decreases with increasing normal  impact velocity. The tangential resti tution process is rather  
complex (Maw et al. 1976, 1981). There can be no slip, micro slip or complete slip in the contact  
zone o f  the colliding bodies. As a result, the coefficient o f  tangential resti tution at the contact  point, 
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/3p, can be positive or negative and it depends on various parameters, for example friction, 
coefficient /2p. A sticking-sliding model may be used to emulate the tangential restitution. 

In oblique impacts, the normal and tangential impulses at the contact point are assumed to obey 
the Coulomb law of friction. In the case of tangential impulse being less than the product of the 

friction coefficient and the normal impulse, i.e. [K x Jl < /~ tK ' J I ,  sticking contact occurs. The 
surface tangential velocity is written as 

K x g *  = - / ~ o ( K  x g , , ) ,  [221 

where /30 is a constant characterizing the restitution of velocity in the tangential direction for 
sticking contacts, and in general, 0 ~</~0 ~< 1. Positive/~0 denotes particles rebounding with reverse 
spin caused by the restoration of elastic energy in the tangential direction. 

On the other hand, when the tangential impulse is greater or equal to the product of the friction 
coefficient and the normal impulse, sliding contact occurs and the following equality applies, 

IK × JI =/# lK.J I .  [231 

From [21] and [23], the tangential coefficient of restitution is found explicitly as 

tip = - 1 + #~(1 + ep)(l + K~ ')IK.g,21/IK × g,21. [24] 

When the collisional properties ev,/~0 and ]~p, and the initial rotational and translational velocities 
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of the particles are known, the impulse J in [21], the coefficient /3p in [22] or [24], and the 
post-collisional velocities in [19]-[20] can be determined. 

In the case where a particle collides with a flat wall, the change in particle linear and angular 
momenta are 

and 

rap(v, -- v*) = J, I(to* - -  ( ~ 1 )  : --d(n × J)/2 [25] 

J = 2mpq2g,2 + 2mp(r/~ - r/2)n(n.g]2), [26] 

where n is the unit normal perpendicular to the flat wall surface. 
Recently, Foerster et al. (1994) measured the coefficients ep,/30 and/~p for collisions between small 

glass beads to be 0.97, 0.44 and 0.09, respectively. Inferring from the measurements of Maw et al. 
(1981), the mean coefficients ep, /~0 and #p for steel pucks colliding with a steel block were 0.93, 
0.40 and 0.123, respectively; similarly, for rubber pucks colliding with a rubber block, the 
coefficients were 0.86, 0.5, and 1.6, respectively. 

5.  N U M E R I C A L  P R O C E D U R E  

By using the above turbulent two-phase flow model, a computer program is developed to 
simulate a gas-solid suspension in a horizontal channel. Initially, a single-phase turbulent fluid flow 
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field is computed for a specific bulk (or overall mean) fluid velocity U m  in a channel. The streamwise, 
the vertical and the spanwise directions are designated as the x-, y- and z-axes, respectively. The 
boundary conditions for the fully developed two-dimensional flow in a horizontal channel are 

(?P = const, @ 8k & °u'-°'a¥ u,=0, u_=0,_ ,~ ~=-0, ,~=0, ,~x=0. 

On the solid walls, the boundary conditions for the mean fluid velocity and the turbulent kinetic 
energy are U~ = 0 and k = 0, respectively. The boundary condition for the rate of turbulent kinetic 
energy dissipation proposed by Hanjalic and Launder (1976) is used, i.e. 

The set of partial differential equations deduced from the conservation and constitutive equations 
in [5]-[11] are integrated numerically by the SIMPLE method (Patankar 1980) subject to the 
boundary conditions above. The Reynolds stress tensor in [7] reduces to the usual one 

e.g. r;, = - p f u ; u ;  = tJt @ /t 

while the turbulence intensities in [8] remain anisotropic. In order to verify the code, the computer 
program is used to simulate a number of experiments of single-phase turbulent gas flows in channels 
(Liu 1995). The numerical predictions for flow properties such as the mean fluid velocity and the 
anisotropic turbulence intensities are found to agree reasonably well with the experimental 
measurements. 

Before one can integrate the equations of motion of the particles in [12], the distribution of the 
fluid phase properties must be known. The finite-difference (SIMPLE) method for the fluid phase 
can only provide mean quantities, while instantaneous properties are required in the particle 
equations of motion. The instantaneous fluid velocity is the sum of a mean component and a 
fluctuation component. The fluid fluctuation velocity at each node is sampled from a Gaussian 
distribution based upon the r.m.s, of the turbulence intensity in each direction. The mean and 
instantaneous fluid velocities at the particle center are linearly interpolated from values at the 
closest grid nodes of the fluid finite-difference scheme enclosing the particle. 

In general, the fluid velocity probability density function can be skewed. Elghobashi and 
TruesdeU (1993) found in their direct numerical simulation of low particle Reynolds number flows 
that the skewness of the grid-generated homogeneous turbulence decreases with increasing particle 
Reynolds number. They simulated flows in the range of 0 < Rep < 0.36. In relatively high particle 
Reynolds number flows of the order 102 , it is plausible that the skewness will become small and 
a normal distribution will suffice to approximate the real one. 

Each fluctuation velocity represents an energetic eddy with a certain lifetime interacting with the 
solid particles in its vicinity. The eddy lifetime or sometimes called the interaction time is randomly 
sampled from a Gaussian distribution based upon the random lifetime of turbulent eddies with 
the Lagrangian integral timescale (Sommerfeld 1992). In the present study of dilute suspensions 
with large and massive particles moving at intermediate particle Reynolds number in the inertia 
regime, the direct turbulence modulation due to particle-induced turbulence is likely to be negligible 
and the mean Lagrangian integral timescale may be approximated by the correlation obtained in 
the single-phase fluid turbulent flows (Hinze 1975; Rizk and Elghobashi 1989) 

TL = 0.2 k • 

The fluid phase momentum equation in [6] contains a mean interfacial momentum flux per unit 
volume term, M. From [4] and [12], the following expression is obtained 

M = O(pp ,~ (FDj -[- ~'LS! -~- FLMj). 
mprl ;=1 

[27] 
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The method of particle-source in cell was introduced by Crowe et al. (1977) to determine the 
momentum interaction term in [27]. Durst et al. (1984) and Tsuji et al. (1987) used similar methods 
in which M for a particular computational cell was equated to the sum of the net rate of momentum 
change (per unit volume) of particles passing through the cell. 

The simulation program for the solid phase is mainly patterned after the work of Lun and Bent 
(1994). Depending on the mass loading ratio (mass flux ratio of solid phase to gas phase), solid 
particles are distributed randomly inside a control volume enclosed by the top and bottom solid 
flat walls and the four stationary periodic side walls. Initially, random fluctuation velocities in 
addition to a mean velocity close to Um are assigned to each particle. 

The motions of the particles are assumed to be uncorrelated and there is no other 
particle-particle interaction except direct hard collisions. This assumption is valid in dilute 
gas-solid flows. By numerically integrating the coupled translational and rotational equations of 
motion for each particle in a constant time step At (of the order 10 -5 s), the particle can be ad~,anced 
from one position to another. The particles are moved at very small time increment so that the 
particles are moved no more than 20% of the particle diameter each step. This ensures that the 
particles will not unknowingly pass through each other or the solid walls and the probability of 
simultaneous multiple collisions is eliminated. After all the particles had been moved, the distances 
between particle centers and between particles and solid walls are computed. For example, if the 
distance between two particle centers is less than a particle diameter, then a particle-particle 
collision had occurred within the last time step. Each collided particle is moved back to its old 
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position at At ago, and then to the location where it just touches its colliding partner. The impulse 
and the post-collisi0nal particle velocities are calculated according to [19]-[21] or [25]-[26]. New 
trajectory for the collided particle is computed. If however no collision has occurred at all or after 
all the collisions have been dealt with, every particle is moved again for another At. After a specific 
time (500At, say), new fluid properties are computed by incorporating into the fluid 
finite-difference calculation the information obtained from the solid phase computation, namely 
the mean solid volume fraction and the mean interracial momentum flux per unit volume 
associated with each grid cell. The new mean fluid properties will subsequently be used in the solid 
phase computation. Such a two-way coupling iterative procedure continues until a specific time 
for ending the computation is reached. 

Large cumulative statistical samples (appendix B) are taken only after the flow has become steady 
and fully developed. The bulk particle velocity and the total kinetic energy of the solid phase are 
used as indicators for determining whether the flow has reached steady state or not. Typically, a 
steady flow is established after 1000 collisions per particle. For example, the simulation program 
running in a Microway Number Smasher-860-40 MHz coprocessor board takes about 48 h of real 
time to finish about 6000 collisions per particle for a suspension with 501 particles. 

6, RESULTS 

Figure 1 shows the comparison between the simulation result and the experimental 
measurements of the distributions of particle concentration and mean gas velocity in air-solid 
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two-phase flows in a horizontal channel (Lourenco et al. 1983). The channel height H was 50 mm. 
High velocity air (with mass density pf of  1.2 kg/m 3 and dynamic viscosity it of  1.8 x 10 -5 Pas) was 
used to suspend and transport spherical glass beads along the channel. The diameter and the mass 
density of  the glass beads were 0.5 mm and 2400 kg/m 3, respectively• The bulk air velocities tested 
in the experiments were Um= 8.9 and 15 m/s, and the corresponding channel Reynolds numbers, 
Ren = prUmH/[t, were 29,667 and 50,000. 

Detailed information about the channel and the materials tested is unfortunately not available. 
For simplicity, the collisional properties (ep, fl0 and #p) for both the particle-particle collisions and 
the particle-wall collisions are assumed to be identical. In other words, the collisional properties 
are regarded as some mean quantities appropriate for the flow system. Foerster et al. (1994) 
measured the mean coefficients for normal restitution (ep), tangential restitution at the contact point 
for sticking contacts (fl0), and friction (/~o) to be 0.97, 0.44 and 0.09, respectively, for small smooth 
glass beads. The friction coefficient for the glass beads used by Lourenco et al. (1983) is unknown• 
However, glass is brittle. The numerous collisions that each particle suffered would have caused 
multiple microfractures at its surface and thus a friction coefficient higher than the initial value. 
The simulation result presented in figure 1 is based on a friction coefficient of  0.40. 

Due to gravity, the particle concentration (p) increases from the top to the bottom of the channel 
as shown in figure l(a). Evidently, it was difficult to control the loading and to measure the solids 
concentration distribution in such type of experiments. There were significant discrepancies 
between the bulk solids concentration (Pm)  ( o r  equivalently the mass loading ratio, mr) reported 
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by Lourenco et al. (1983) and the values actually obtained from the measured distributions. From 
the test data (figure l(a)), one may estimate pm for each profile by dividing the sum of the 
concentration readings across the flow field by the number of data points. The values for pm are 
found to be 0.95, 2.62 and 4.77 kg/m 3 corresponding to the profiles with mr of 0.45, 1.5 and 3.2 
respectively, whereas the values for p,, given by the products of mr and the air density are 0.54, 
1.8 and 3.84 kg/m 3. The difference between the two sets of pm ranges between 24 and 76%. In other 
words, the actual mass loading in the flows should have been about 0.79, 2.19 and 4.0 instead of 
0.45, 1.5 and 3.2. 

The mean air velocity profile predicted by the present simulation agree qualitatively with 
the experimental measurements for U,, = 8.9 m/s and mr of 0.75, 1.43 and 2.0 as shown in 
figure l(b). Lourenco and Essers (1983) pointed out that the intrusion of the air velocity probe 
into the flow field induced certain additional perturbation in the measurements. Nonetheless, 
it is evident in both the predictions and the measurements that the asymmetry of the mean 
air velocity profile becomes more and more pronounced as the loading ratio increases. 
For  single-phase turbulent air flow at high Reynolds number, the fluid velocity profile is 
essentially symmetric across the channel height. Due to gravity, the particle concentration is 
higher near the bottom than elsewhere. The relatively higher solids concentration near the 
bottom causes higher resistance to the air motion than those in the upper region. As a 
result, the air moves relatively slower near the bottom than near the top. It is noteworthy 
that mr of 0.75, 1.43 and 2.0 correspond to bulk solids volume fraction (~m) of 3.75 x 10 -4, 
7.15 x 10 -4 and 0.001, respectively. Thus, even in these very dilute systems, the 
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interfacial coupling effect which is responsible for the asymmetry of  the mean fluid velocity profile 
may not be neglected. 

Next, the computer  program is applied to simulate the turbulent air-solid flows in the horizontal 
channel experiment of  Tsuji et al. (1987). The channel height H was 25 mm. The bulk air velocities 
tested in the experiments were Um ---- 7 and 15 m/s which yielded the channel Reynolds numbers 
(Re , )  of  11,667 and 25,000, respectively. The solid phase was composed of polystyrene beads with 
1 mm diameter and mass density of  1000 kg/m 3. The particle-wall friction coefficient was 0.4. The 
mass loading ratio, mr, were 1, 3 and 5 which corresponded to am of  0.0012, 0.0036 and 0.006, 
respectively. Tsuji et al. used a pitot tube to measure the air velocity, and a fiber optic probe to 
measure the particle velocity and number density. 

Tsuji et al. (1987) suggested an gp of 0.8 for the polystyrene beads colliding with the solid walls. 
Unfortunately, there is no information about  the coefficients for normal restitution and tangential 
restitution for the particle-particle collisions. Again for simplicity, the particle-particle collisional 
properties (ep, fl0 and/Xp) are taken to be identical to those for particle-wall collisions and they 
are regarded as some average values suitable for the flow system. The values of  ep = 0.9, fl0 = 0.4 
and /~p = 0.47 are used in the computations, unless specified otherwise. 

The normalized solids volume fraction distribution predicted by the simulation is compared with 
the experimental measurements of  Tsuji et al. (1987) in figure 2(a) and (d). Fair agreement is found 
among the two. The predicted profiles show that a maximum solids concentration is located at a 
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small distance away from the bottom wall. Similar behavior was reported in the numerical studies 
of Tsuji et al. (1987) and Oesterle and Petitjean (1993). 

When the present computer program is set to treat only particle-wall collisions and ignore any 
interparticle ones, all the solid particles are found to deposit and roll along the bottom of the 
channel similar to what Tsuji et al. (1987) had found. Changing the collisional properties of the 
particles would either quicken or prolong the deposition process. However, when particle particle 
collisions are incorporated in the computations a steady and fully developed suspension is resulted. 
There is no need of any virtual wall model because energy and momentum can be transferred 
through the solid phase by means of interparticle collisions. It is noteworthy that the percentages 
of the number of interparticle collisions to the total number of collisions are 10, 48 and 66 for 
U,, = 7 m/s corresponding to ~,,1 of 0.0012, 0.0036 and 0.006, respectively; similarly, the percentages 
are 26, 52 and 67 for Um= 15 m/s. The percentages of the number of interparticle collisions turned 
out to be quite high in these dilute systems. One major implication is that the effect of interparticle 
collisions is one of the dominant contributors in sustaining the solid phase in a full suspension, 
and its effect should not be neglected even in dilute systems such as the ones studied here. 

The numerical results and the experimental measurements for the dimensionless mean particle 
velocity distribution (V,/Urn) are in good agreement as shown in figure 2(b) and (e). The predicted 
profiles are in general asymmetric due to gravity and interfacial coupling effects. For the range of 
mass loading simulated, the mean particle Reynolds number is found to range approximately 
between 10 to 380 for bulk velocities of Um = 7 and 15 m/s. 

v/H 

1.0 

0.8 

0 .6  

0.4 

0.2 

0 . o  6 

, w , i 

(a) U,,, 
7m/~ 

i f ' ~ ' 

I, 

~Q'\, 

~, \ ,  
\ , 

0 

L~,,/p/dU~ (x 10-3) 

y/H 

1,0  ~ i w , i 

(b) U,. i/ 0.8 7m/s 

0.6 

0.4 ,@t 

0"o6 o 

Lk,,/pidU~ ( xlO -3) 

y/s 

. 0  | I I ! I I ~ | I I ! I | I l I 

(c) u . ,  
0.8 7rn/s 

0.6 

0.4 

0.2 

O n  2~  . . . .  , . . . . . .  , . . . .  
• - 1  0 1 2 

Lh,, IplaU~ (x 10-3) 

u/H 

1 . 0  ( q q [ I I I I ! I I ] ] I ] I I [ 

: (d) Um 
0.8 ! 7rn/s 

0.6 

0.4 

0.2 

0"02 " '21 . . . .  o " '  1 . . . .  2 

Lk,y/psdt;~ (xlO -3) 

Fig. 11. (a ) - (d)  (caption facing page) 



D I L U T E  T U R B U L E N T  G A S  S O L I D  F L O W S  595 

In figure 2(c) and (f), there is reasonable agreement between the predictions and the experimental 
measurements for the mean air velocity distribution. The results are similar to those observed 
earlier in the test data of Lourenco et al. (1983) in figure l(b). The mean air velocity distribution 
becomes increasingly asymmetric with the increase of mass loading. 

When the fluctuation component of the fluid velocity is set to be zero, in other words the 
turbulent forcing was turned off in the solid phase simulation, the mean flow properties (such as 
solids concentration, gas and particle velocities) show no appreciable changes in their distributions. 
Typically the mean particle velocity is reduced by about 2%. This result is consistent with our 
assumption that the fluctuations of both fluid and particle properties are uncorrelated. Louge et al. 
(199 l) studied dilute two-phase flow systems with particles massive enough to be unaffected by the 
velocity fluctuations in the turbulent gas. They 'extended' Koch's correlation (Koch 1990) between 
the velocity fluctuations of the gas and those of the particles for Stokes flows (u:v') to the Newtons 
flows by employing a modified relaxation time. They commented that the contribution of u:v: is 
typically dominated by other terms. 

Pressure drop in pneumatic-transport devices is an important design parameter. Good agreement 
is found between the predictions and the measurements of Tsuji et al. (1987) for the variation of 
the pressure gradient with the loading ratio as shown in figure 3. As one might expect, the pressure 
drop which is caused by the losses in both the solid phase and the gas increases with increasing 
mass loading. 
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Figure 4 shows the distribution of the z-component of mean dimensionless particle angular 
velocity (fZ:d/Um). Particle rotations are induced by a number of factors such as frictional collisions 
between the particles themselves or between the particles and the solid-walls. The negative mean 
angular velocity in the z-direction indicates that on average the particles rotate in the clockwise 
manner. The x- and y-components of ~ are negligibly small. The relative angular velocity between 
a particle and the fluid in the clockwise direction produces a Magnus lift in the vertically upward 
direction which helps suspending the particle against gravity. Furthermore, the mean particle spin 
velocity increases with decreasing loading ratio. Such an increase actually compensates to a certain 
degree for the diminishing support in maintaining a steady suspension through interparticle 
collisions since the number of interparticle collisions decreases with decreasing loading ratio. 
The mean particle spin Reynolds number ranges from about 30 to 340 for all the cases simulated 
here. 

The variation of turbulence intensities with mass loading is shown in figure 5 for Um= 7 and 
15 m/s. The dotted curve represents the case of single-phase air flow. With the presence of relatively 
large solid particles, the air turbulence intensities are modified indirectly by the interfacial couplings 
in such a way that there can be turbulence enhancement in one region and attenuation in another. 
Unfortunately, Tsuji et al. (1987) did not measure the air turbulence intensities in their channel 
experiment. Previously, Tsuji and Morikawa (1982) measured the streamwise turbulence intensities 
of air-solid flows in a horizontal pipe. They found that in general the presence of relatively large 
plastic particles with 3.4ram diameter increases the turbulence markedly, while small plastic 
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The effect of loading ratio on the intensities of particle translational fluctuation velocity (or the 
square root of the translational granular temperatures) is shown in figure 6. Comparing the 
intensity profiles in figures 5 and 6, one can observe that the magnitude of  the translational 
fluctuation velocity intensities of the solid phase is comparable to their counterparts in the gas 
phase. The granular temperature decreases with increasing mass loading, and is somewhat higher 
in the upper region than in the lower one. Tsuji and Morikawa (1982) obtained similar behavior 
in the streamwise intensity of particle translational fluctuation velocity ( ~ )  as measured in their 
two-phase flow experiment with air and 0.2 mm plastic-beads in a horizontal pipe. 

The intensities of particle rotational fluctuation velocities (or the square root of the rotational 
granular temperatures) are shown in figure 7. Similar to the turbulence intensities (figure 5) and 
the translational granular temperatures (figure 6), the rotational granular temperature is also 
anisotropic. The dominant component of the rotational granular temperature is in the z-direction. 

The stress distributions of the gas phase and the solid phase are some very useful and interesting 
information which can be obtained readily in the simulation. In particular, the particle stress 
distributions are extremely difficult to measure in physical experiments and so far there has been 
no report of such quantities yet in two-phase flows. 

Figure 8 shows the variation of the Reynolds shear stress and the total fluid shear stress with 
the mass loading and the bulk fluid velocity. As one may observe in the figure, the modification 
of the Reynolds (or the total) shear stress due to the presence of the particles is rather complex. 
Depending on the loading ratio and the bulk fluid velocity, there can be reduction, augmentation 
or a combination of both in fluid stresses across the channel height. 

Figures 9 and 10 show the distributions of the particle kinetic stresses and the particle collisional 
stresses respectively. The particle normal stresses are clearly anisotropic. According to the kinetic 
theories of granular flow (Lun 1991; Lun and Savage 1987; Lun et al. 1984), the particle kinetic 
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and collisional stresses depend strongly on solids concentration. Therefore, it is not surprising to 
see that the particle stresses decrease with increasing elevation in a way somewhat similar to the 
variation of particle concentration shown in figure 2(a), (d). 

Interestingly, the particle kinetic shear stress in figure 9(d), (h) is of the same order of magnitude 
as the total fluid shear stress as shown in figure 8. Furthermore, the particle kinetic shear stress 
actually changes sign at a certain location along the vertical axis. This behavior resembles the 
variation of  the total fluid shear stress (or the Reynolds shear stress) across the channel height. 

For dilute systems such as the ones being studied here, the particle collisional stresses are 
typically an order of  magnitude lower than the particle kinetic stresses (see figures 9 and 10). This 
result however should not be viewed as to undermine the importance of  interparticle collisions in 
sustaining a steady suspension. The main reason for such low particle collisional stresses is that 
the solids concentration is low. It is well known in the kinetic theory of  granular flows that in dilute 
systems the dominant stresses are the kinetic ones rather than the collisional ones. For  high solids 
concentrations the collisional stresses will dominate over the kinetic ones. 

The distribution of  the particle kinetic angular momentum flux (or sometimes called the kinetic 
couple stresses) is shown in figure 11. The major components are Lkx.- and Lk,: while the minor 
ones are Lk.-x and Lk:,. The other five components are typically two to three orders of magnitude 
smaller than the major ones. Moreover, in the present dilute systems the particle collisional couple 
stresses are at least one to two orders of magnitude smaller than the kinetic ones as shown in 
figure 12. 
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The effect of some interesting parameters other than the mass loading and the bulk gas velocity 
are examined in the present two-phase simulation as follows. Firstly, the coefficient of normal 
restitution is varied as shown in figure 13, where ep = 0.8, 0.9 and 0.95 for fixed fl0 = 0.4 and 
ktp= 0.47. The particle concentration profile flattens monotonically with decreasing ep as one might 
expect. However, the effect of ep on the mean gas and particle velocities is rather complex due to 
the related factors such as the interfacial couplings, the particle rotations, and the interparticle 
collisions. 

Figure 14 shows the variation of the friction coefficient with the particle concentration and the 
mean velocities. The solids concentration distribution levels off with decreasing friction due to the 
reduction in particle angular velocities and vertical Magnus lifts. When the walls and the particles 
are made frictionless, all the grains eventually deposit and roll along the bottom wall. This indicates 
that particle rotations play an equally important roll as do the interparticle collisions in sustaining 
a steady fully developed suspension in the grain inertia regime. 

The effect of particle size on the flow properties are shown in figure 15. According to the present 
simulation, the mean particle Reynolds number for 2 mm diameter particles is found to be about 
560. The significant effect in doubling the particle diameter is that the mean particle velocity, V,/U,, 
is reduced by about 40%. In figure 16 it is interesting to note that in general the turbulence 
intensities are augmented due to the increase in particle diameter. These two predictions are 
consistent qualitatively with the experimental result obtained by Tsuji et al. (1982, 1984) in air-solid 
two-phase flows in a vertical pipe and a horizontal pipe. 

7. CONCLUSION 

A set of turbulent transport equations and a two-equation k-e closure is used to model the fluid 
phase in a gas-solid suspension in this study. The trajectories and velocities of the solid particles 
are determined by integrating the particle equations of motion. A sticking-sliding collision model 
is employed for the particle-particle collisions and the particle-wall collisions. The simulation result 
for gas-solid flows in a horizontal channel shows that even though the suspension might be dilute 
with solids volume fraction of the order 10 -3, interparticle collision plays a critical role in 
maintaining a steady and fully developed suspension, and its effect should not be ignored. The effect 
of Magnus lift due to particle rotation is also important in suspending the solid phase. The 
incorporation of interparticle collisions, Magnus lift and a realistic sticking-sliding collision model 
in the simulation eliminates the need for any 'virtual wall' model. 

In general, favorable agreement is found between the simulation result and the experimental 
measurements for the fluid pressure gradient and the distributions of mean fluid velocity, mean 
particle concentration and velocity in a horizontal channel-flow; detailed descriptions are given in 
the previous section. Interesting macroscopic properties such as mean particle angular velocity, air 
turbulence intensities, Reynolds stresses, translational and rotational granular temperatures, 
particle stresses and angular momentum fluxes are presented in the paper. Moreover, the effects 
of the coefficient of normal restitution, the friction coefficient and the particle size on the flow 
properties are studied. Such microscopic material properties have profound influence on the 
macroscopic flow properties of the two-phase gas-solid system in the inertia regime. The solid 
particles are suspended and transported along the channel by means of saltation and interparticle 
collisions as a result of the influxes of energy and momentum from the carrier fluid phase. 

So far, we have used a mean coefficient of normal restitution ep. In reality, ep depends on the 
normal impact velocity. However, there are certain limitations to numerical simulations just like 
everything else. For example, if the coefficient of normal restitution of the flow particles is too low, 
the round-off errors in the double-precision floating point calculations can become large enough 
to cause unwarranted effects such as unrealistic collision time and overlapping of particles. 
Nonetheless, it seems worthwhile to implement an impact velocity dependent ep for at least slightly 
inelastic materials in the present two-phase flow model. 

Work is in progress to apply the present two-phase model to simulate gas-solid flows in 
horizontal pipes. Since two-phase flows in pipes are the predominant commercial means for 
material transport and processing, there are a few more detailed experimental investigations in 
pipe-flows than in channel-flows. The stress and turbulence intensities model of Nisizima and 
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Yoshizawa (1987) employed in the present study is only applicable to channel-flows so far. In order 
to study pipe-flows, a second-order turbulence closure model which will yield an appropriate set 
of anisotropic turbulence intensities will be utilized instead. As we have learned in the present 
channel-flow study, the interfacial coupling can strongly affect the fluid phase mean velocity and 
turbulence intensities. All the fluid and solid flow properties are intricately related. Therefore, a 
realistic description of the anisotropic turbulence intensities in the system is understandably critical 
in the study of turbulence modulation in fluid-solid flows. 
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A P P E N D I X  A 

Magnus Lift Coefficient 

Rubinow and Keller (1961) found analytically that for Rep < 1, the Magnus lift coefficient is 
given by 

~od 
CLM ----- - -  [1 + O(Rep)], 

V 

and the drag coefficient CD is independent of the nondimensional rotational speed, ood/v. The 
quantities o~ and v are the particle angular and translational speeds, respectively. Oesterle et al. 
(1991) measured the Magnus lift on a rotating sphere for 10 < Rep < 60, and they proposed that 
the lift coefficient may be expressed as 

CLM (0.35 _+ 0.1) oJd 
U 
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For 550 < Rep < 1600, Tsuji et al. (1985) inferred from their experimental data the correlation 

C,M = (0.2 + 0.05)o~d. 
t) 

Utilizing the above result, one may deduce the following correlation for the Magnus lift 
coefficient 

cod 
CLM = - -  (Rep ~< 1) 

v 

CLM = cod (0.178 + 0.822Re~ -°522) (1 < Rep < 1000) 

which is applicable for a wider intermediate range of Rep than the previous ones. Figure A1 shows 
the comparison of the correlation with the experimental data of Oesterle et al. (1991) and Tsuji 
et al. (1985). 

A P P E N D I X  B 

Solid Phase Statist ical  M e t h o d  

For a two-dimensional fully developed flow in a horizontal channel, the mean particle properties 
only vary in the vertical direction. The simulated control volume is partitioned into n number of 
horizontal strips across the channel. On the basis of the integrals for transport properties in the 
kinetic theories (Lun 1991; Lun and Savage 1987), one can deduce an equivalent set of discrete 

I0 w v w w v | w • i l ! 

I o I0 < Re < 30 

CLM 0.3 

0.1 

Ls f 

0.03 I "  

0.1 

x 40 < Re < 60 
~F ,,, ''Of " 

3 550 < Re < 1600 i "o °g" ' 

~'0 f ' '  
o R,eS" / "  

j f  ° ~ "  

.,.s X .J 

/ ~ ' J ,  

7 

I I i m n i i n 1 I I I I i i J t 

0,3 1 3 I 0  

~oa/v 

Figure AI .  Lift coefficient versus dimensionless angular  speed. Present  correlation: - - ,  Re = I; - - -  
Re = 20; . . . . .  , Re = 1000. Experimental  data: ~ ,  × ,  Oesterle et  al. (1991); O ,  Tsuji et al. (1985)i 
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formulae for determining the distribution of macroscopic properties such as mean velocity, 
concentration and stresses for the solid particles in the system. Let V,, be the volume of the ith 
strip and Ni be the number of particles inside, then the volume fraction ~,  mean velocity V~, and 
mean angular velocity g~ of the particles in the ith strip are 

~d~N, 
~ -  6V. 

1 v,= Ev, 
/ 

leo,, 
where Zj represents the sum over all the particles 

The square of the mean intensity of translational 
called the translational granular temperature since 

inside the ith strip. 
fluctuation velocities in each strip is sometimes 
T, = ( ¢ ' ¢ ) / 3 ,  and each component is given as 

/ 

where the subscript fl can represent the x-, y- or z-directions. The angular brackets for particle 
properties represents long time ensemble average. Similarly, the square of the mean intensity of 
rotational fluctuation velocities or the rotational granular temperature is defined as 

I 

The distribution of the translational granular temperature T, and the rotational granular 
temperature T, may be written, respectively, as 

1 
T,, = E v;.v; 

1 

and 

K~ 
Tri = E , , , ; , , , ; .  

J 

Other interesting flow properties such as particle stresses Pk and Pc, and particle couple stresses 
(or angular momentum fluxes) Lk and Lc, are useful in understanding the interactions of particles 
in the solid phase, and they may be expressed as 

rtd3pp ~ v~ ' 
Pk/= 6 Vc, , • v, 

d 
P~i-  V~,At ~ JjKj 

/ 

I I 
Lki = ~ ~ V;'m/ 

/ 

t c ~  - m 

aV 
2V~iAt ~ Kj(J, x Ki) 

/ 
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where the subscripts k and c denote kinetic and collisional quantities, respectively. For  example, 
the kinetic stresses Pk represent the rate of linear momentum transfer per unit area due to the 
streaming motion of particles. The collisional stresses Pc depict the rate of linear momentum 
transfer per unit area due to the exchange of linear momentum through interparticle collisions. 
Similar descriptions can be said about the couple stresses Lk and L .  


